本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。
开发 Coach 的动机是,通过掌控多核 CPU 处理的能力来训练、评估强化学习智能体,从而获得顶尖的结果。也是为了通过模块化设计和对 API 的简洁设定,提供简化新算法开发的沙盒。
Coach 是一个 Python 环境,以一种模块化的方式对智能体与环境之间的交互建模。有了 Coach,我们就有可能通过结合不同的模块对智能体建模了,也能在不同的环境中训练智能体。可使用的环境,让我们能在不同的实务领域测试智能体,比如机器人、自动驾驶汽车、游戏等。Coach 能够收集训练过程的统计数据,并支持高级可视化技术,从而 debug 训练的智能体。

每一个智能体至少有一个神经网络作为函数近似器用于选择 action。该网络是模块化设计的以便在不同的智能体中复用。它由三个主要部分组成:
输入 Embedder(Input Embedder)- 这是网络的第一个阶段,用于将输入转换为一个特征向量表示。有可能用于组合任意支持的 embedder 的多个实例,以允许输入的多种组合。
有两种主要的输入 embedder:
中间件(Middleware)- 中间件获取输入 embedder 的输出,并在其被发送到输出头之前,转化为一个不同的表示域。中间件的目标是使处理多个输入 embedder 的组合输出成为可能,并对它们进行额外的处理。它可能是一个 LSTM 或者仅仅是一个朴素的全连接层。
输出头(Output Heads)- 输出头用于预测网络的值,可能包括行动分值(action-values)、状态值(state-values)或一个策略(policy)。输入 embedder 的功能允许在同一个网络中使用多个输出头。例如,Actor Critic 智能体组合了两个输出头,一个策略头和一个状态值头。此外,输出头能根据头类型定义损失函数。

大多数强化学习智能体包含网络的多个拷贝。这些拷贝将作为主网络的副本并以不同的速率更新,通常在本地或者在并行的工作系统中同步。为了使拷贝的同步更容易,将这些拷贝封装为简化的 API,从而可使智能体忽略背后复杂的细节。

Coach 支持许多顶级的强化学习算法,主要可分为两类:价值优化与策略优化,如下图所示。

原文文档地址:http://coach.nervanasys.com
原文来自:机器之心
声明:所有来源为“澳门太阳集团城网址8722”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
先进的图像理解和分析能力,它能够快速准确地解析和理解图像内容。无论是自然风景、城市建筑还是复杂的场景与活动,都能提供详细的描述和深入的分析。
根据文本提示(prompt)和图片公网访问链接,编辑原图按照特定风格、场景和氛围感的输出新的图像。广泛应用于电商营销、广告设计、创意灵感等领域,为用户带来高效且个性化的AI图像创作体验。
根据文本提示(prompt),生成生成具有特定风格、场景和氛围感的图像。广泛应用于电商营销、广告设计、创意灵感等领域,为用户带来高效且个性化的AI图像创作体验。
查询台风信息和台风路径
查询国家预警信息发布中心发布的气象预警信息,如:台风、暴雨、暴雪、寒潮、大风、沙尘暴、高温、干旱、雷电等预警类型及预警等级、时间等信息。